Probabilistic latent component analysis (PLCA) is applied to the problem of gearbox vibration source separation. A model for the probability distribution of gearbox vibration employs a latent variable intended to correspond to a particular vibration source, with the measured vibration at a particular sensor for each source the product of a marginal distribution of vibration by frequency, a marginal distribution of vibration by shaft rotation, and a sensor weight distribution. An expectation-maximization algorithm is used to approximate a maximum-likelihood parameterization for the model. In contrast to other unsupervised source-separation methods, PLCA allows for separation of vibration sources when there are fewer vibration sensors than vibration sources. Once the vibration components of a healthy gearbox have been identified, the vibration characteristics of damaged gearbox elements can be determined. The efficacy of the technique is demonstrated with an application on a gearbox vibration data set.
CITATION STYLE
Isom, J., Shashanka, M., Tewari, A., & Lazarevic, A. (2010). Probabilistic latent component analysis for gearbox vibration source separation. In Annual Conference of the Prognostics and Health Management Society, PHM 2010. Prognostics and Health Management Society. https://doi.org/10.36001/phmconf.2010.v2i1.1889
Mendeley helps you to discover research relevant for your work.