This contribution is an essay of formal philosophy—and more specifically of formal ontology and formal epistemology—applied, respectively, to the philosophy of nature and to the philosophy of sciences, interpreted the former as the ontology and the latter as the epistemology of the modern mathematical, natural, and artificial sciences, the theoretical computer science included. I present the formal philosophy in the framework of the category theory (CT) as an axiomatic metalanguage—in many senses “wider” than set theory (ST)—of mathematics and logic, both of the “extensional” logics of the pure and applied mathematical sciences (=mathematical logic), and the “intensional” modal logics of the philosophical disciplines (=philosophical logic). It is particularly significant in this categorical framework the possibility of extending the operator algebra formalism from (quantum and classical) physics to logic, via the so-called “Boolean algebras with operators” (BAOs), with this extension being the core of our formal ontology. In this context, I discuss the relevance of the algebraic Hopf coproduct and colimit operations, and then of the category of coalgebras in the computations over lattices of quantum numbers in the quantum field theory (QFT), interpreted as the fundamental physics. This coalgebraic formalism is particularly relevant for modeling the notion of the “quantum vacuum foliation” in QFT of dissipative systems, as a foundation of the notion of “complexity” in physics, and “memory” in biological and neural systems, using the powerful “colimit” operators. Finally, I suggest that in the CT logic, the relational semantics of BAOs, applied to the modal coalgebraic relational logic of the “possible worlds” in Kripke’s model theory, is the proper logic of the formal ontology and epistemology of the natural realism, as a formalized philosophy of nature and sciences.
CITATION STYLE
Basti, G. (2022). The Philosophy of Nature of the Natural Realism. The Operator Algebra from Physics to Logic. Philosophies, 7(6). https://doi.org/10.3390/philosophies7060121
Mendeley helps you to discover research relevant for your work.