Ets-2 Regulates Cell Apoptosis via the Akt Pathway, through the Regulation of Urothelial Cancer Associated 1, a Long Non-Coding RNA, in Bladder Cancer Cells

73Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

Abstract

The majority of the human genome is transcribed and generates non-coding RNAs (ncRNAs) that fail to encode protein information. Long non-coding RNAs (lncRNAs) are emerging as a novel class of ncRNAs, but our knowledge about these ncRNAs is limited. Previously, our laboratory has identified that a lncRNA, Urothelial cancer associated 1 (UCA1), played an important role in bladder cancer. Despite the recent interest in UCA1 as a diagnostic marker for bladder cancer, little is known about its transcriptional regulation. To elucidate the regulation of UCA1 gene expression, we have characterized the human UCA1 gene promoter. A 2.0-kb fragment of its 5′ flanking region was cloned into a luciferase reporter vector. Deletion and mutation analysis suggested that an Ets-2 binding site was critical for UCA1 gene promoter activity. Further analysis of this site by gel shifting, chromatin immune precipitation (ChIP), and co-transfection experiments showed that transcription factor Ets-2 directly bound to the UCA1 promoter region and stimulated UCA1 promoter activity in bladder cancer cells. Taking into account the anti-apoptosis function of Ets-2, our data suggested that Ets-2 regulates apoptosis process by regulating the expression of UCA1, moreover UCA1 may be involved in the activation of Akt signaling pathway by Ets-2 in bladder cancer cells. © 2013 Wu et al.

Cite

CITATION STYLE

APA

Wu, W., Zhang, S., Li, X., Xue, M., Cao, S., & Chen, W. (2013). Ets-2 Regulates Cell Apoptosis via the Akt Pathway, through the Regulation of Urothelial Cancer Associated 1, a Long Non-Coding RNA, in Bladder Cancer Cells. PLoS ONE, 8(9). https://doi.org/10.1371/journal.pone.0073920

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free