A number of studies have resulted in the finding of a 3-D perceptual anisotropy, whereby spatial intervals oriented in depth are perceived to be smaller than physically equal intervals in the frontoparallel plane. In this experiment, we examined whether this anisotropy is scale invariant. The stimuli were L shapes created by two rods placed flat on a level grassy field, with one rod defining a frontoparallel interval, and the other, a depth interval. Observers monocularly and binocularly viewed L shapes at two scales such that they were projectively equivalent under monocular viewing. Observers judged the aspect ratio (depth/width) of each shape. Judged aspect ratio indicated a perceptual anisotropy that was invariant with scale for monocular viewing, but not for binocular viewing. When perspective is kept constant, monocular viewing results in perceptual anisotropy that is invariant across these two scales and presumably across still larger scales. This scale invariance indicates that the perception of shape under these conditions is determined independently of the perception of size.
CITATION STYLE
Loomis, J. M., & Philbeck, J. W. (1999). Is the anisotropy of perceived 3-D shape invariant across scale? Perception and Psychophysics, 61(3), 397–402. https://doi.org/10.3758/BF03211961
Mendeley helps you to discover research relevant for your work.