Domain-specific aspect-sentiment pair extraction using rules and compound noun lexicon for customer reviews

8Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Online reviews are an important source of opinion to measure products’ quality. Hence, automated opinion mining is used to extract important features (aspect) and related comments (sentiment). Extraction of correct aspect-sentiment pairs is critical for overall outcome of opinion mining; however, current works still have limitations in terms of identifying special compound noun and parent-child relationship aspects in the extraction process. To address these problems, an aspect-sentiment pair extraction using the rules and compound noun lexicon (ASPERC) model is proposed. The model consists of three main phases, such as compound noun lexicon generation, aspect-sentiment pair rule generation, and aspect-sentiment pair extraction. The combined approach of rules generated from training sentences and domain specific compound noun lexicon enable extraction of more aspects by firstly identifying special compound noun and parent-child aspects, which eventually contribute to more aspect-sentiment pair extraction. The experiment is conducted with the SemEval 2014 dataset to compare proposed and baseline models. Both ASPERC and its variant, ASPER, result higher in recall (28.58% and 22.55% each) compared to baseline and satisfactorily extract more aspect sentiment pairs. Lastly, the reasonable outcome of ASPER indicates applicability of rules to various domains.

Cite

CITATION STYLE

APA

Ahamed Kabeer, N. R., Gan, K. H., & Haris, E. (2018, November 29). Domain-specific aspect-sentiment pair extraction using rules and compound noun lexicon for customer reviews. Informatics. MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/informatics5040045

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free