Predictability of biomass burning in response to climate changes

201Citations
Citations of this article
295Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Climate is an important control on biomass burning, but the sensitivity of fire to changes in temperature and moisture balance has not been quantified. We analyze sedimentary charcoal records to show that the changes in fire regime over the past 21,000 yrs are predictable from changes in regional climates. Analyses of paleo- fire data show that fire increases monotonically with changes in temperature and peaks at intermediate moisture levels, and that temperature is quantitatively the most important driver of changes in biomass burning over the past 21,000 yrs. Given that a similar relationship between climate drivers and fire emerges from analyses of the interannual variability in biomass burning shown by remote-sensing observations of month-by-month burnt area between 1996 and 2008, our results signal a serious cause for concern in the face of continuing global warming. © 2012. American Geophysical Union. All Rights Reserved.

Cite

CITATION STYLE

APA

Daniau, A. L., Bartlein, P. J., Harrison, S. P., Prentice, I. C., Brewer, S., Friedlingstein, P., … Zhang, Y. (2012). Predictability of biomass burning in response to climate changes. Global Biogeochemical Cycles, 26(4). https://doi.org/10.1029/2011GB004249

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free