Tunable electronic properties of graphene through controlling bonding configurations of doped nitrogen atoms

60Citations
Citations of this article
93Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Single-layer and mono-component doped graphene is a crucial platform for a better understanding of the relationship between its intrinsic electronic properties and atomic bonding configurations. Large-scale doped graphene films dominated with graphitic nitrogen (GG) or pyrrolic nitrogen (PG) were synthesized on Cu foils via a free radical reaction at growth temperatures of 230-300 °C and 400-600 °C, respectively. The bonding configurations of N atoms in the graphene lattices were controlled through reaction temperature, and characterized using Raman spectroscopy, X-ray photoelectron spectroscopy and scanning tunneling microscope. The GG exhibited a strong n-type doping behavior, whereas the PG showed a weak n-type doping behavior. Electron mobilities of the GG and PG were in the range of 80.1-340 cm2 V-1·s-1 and 59.3-160.6 cm2 V-1·s-1, respectively. The enhanced doping effect caused by graphitic nitrogen in the GG produced an asymmetry electron-hole transport characteristic, indicating that the long-range scattering (ionized impurities) plays an important role in determining the carrier transport behavior. Analysis of temperature dependent conductance showed that the carrier transport mechanism in the GG was thermal excitation, whereas that in the PG, was a combination of thermal excitation and variable range hopping.

Cite

CITATION STYLE

APA

Zhang, J., Zhao, C., Liu, N., Zhang, H., Liu, J., Fu, Y. Q., … Hu, P. A. (2016). Tunable electronic properties of graphene through controlling bonding configurations of doped nitrogen atoms. Scientific Reports, 6. https://doi.org/10.1038/srep28330

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free