In silico design of a new Zn-triazole based metal-organic framework for CO2and H2O adsorption

5Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In search for future good adsorbents for CO2 capture, a nitrogen-rich triazole-type Metal-Organic Framework (MOF) is proposed based on the rational design and theoretical molecular simulations. The structure of the proposed MOF, named Zinc Triazolate based Framework (ZTF), is obtained by replacing the amine-organic linker of MAF-66 by a triazole, and its structural parameters are deduced. We used grand-canonical Monte Carlo (GCMC) simulations based on generic classical force fields to correctly predict the adsorption isotherms of CO2 and H2O. For water adsorption in MAF-66 and ZTF, simulations revealed that the strong hydrogen bonding interactions of water with the N atoms of triazole rings of the frameworks are the main driving forces for the high adsorption uptake of water. We also show that the proposed ZTF porous material exhibits exceptional high CO2 uptake capacity at low pressure, better than MAF-66. Moreover, the nature of the interactions between CO2 and the MAF-66 and ZTF surface cavities was examined at the microscopic level. Computations show that the interactions occur at two different sites, consisting of Lewis acid-Lewis base interactions and hydrogen bonding, together with obvious electrostatic interactions. In addition, we investigated the influence of the presence of H2O molecules on the CO2 adsorption on the ZTF MOF. GCMC simulations reveal that the addition of H2O molecules leads to an enhancement of the CO2 adsorption at very low pressures but a reduction of this CO2 adsorption at higher pressures.

Cite

CITATION STYLE

APA

Dahmani, R., Grubišić, S., Djordjević, I., Ben Yaghlane, S., Boughdiri, S., Chambaud, G., & Hochlaf, M. (2021). In silico design of a new Zn-triazole based metal-organic framework for CO2and H2O adsorption. Journal of Chemical Physics, 154(2). https://doi.org/10.1063/5.0037594

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free