The force of infection, describing the rate at which a susceptible person acquires an infection, is a key parameter in models estimating the infectious disease burden, and the effectiveness and cost-effectiveness of infectious disease prevention. Since Muench formulated the first catalytic model to estimate the force of infection from current status data in 1934, exactly 75 years ago, several authors addressed the estimation of this parameter by more advanced statistical methods, while applying these to seroprevalence and reported incidence/case notification data. In this paper we present an historical overview, discussing the relevance of Muench's work, and we explain the wide array of newer methods with illustrations on pre-vaccination serological survey data of two airborne infections: rubella and parvovirus B19. We also provide guidance on deciding which method(s) to apply to estimate the force of infection, given a particular set of data. Copyright © 2009 Cambridge University Press.
CITATION STYLE
Hens, N., Aerts, M., Faes, C., Shkedy, Z., Lejeune, O., Van Damme, P., & Beutels, P. (2010). Seventy-five years of estimating the force of infection from current status data. Epidemiology and Infection, 138(6), 802–812. https://doi.org/10.1017/S0950268809990781
Mendeley helps you to discover research relevant for your work.