Adaptive network-based fuzzy inference system with leave-one-out cross-validation approach for prediction of surface roughness

49Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

The prediction of surface roughness is a challengeable problem. In order to improve the prediction accuracy in end milling process, an improved approach is proposed to model surface roughness with adaptive network-based fuzzy inference system (ANFIS) and leave-one-out cross-validation (LOO-CV) approach. This approach focuses on both architecture and parameter optimization. LOO-CV, which is an effective measure to evaluate the generalization capability of mode, is employed to find the most suitable membership function and the optimal rule base of ANFIS model for the issue of surface roughness prediction. To find the optimal rule base of ANFIS, a new " top down" rules reduction method is suggested. Three machining parameters, the spindle speed, feed rate and depth of cut are used as inputs in the model. Based on the same experimental data, the predictive results of ANFIS with LOO-CV are compared with the results reported recently in the literature and ANFIS with clustering methods. The comparisons indicate that the presented approach outperforms the opponent methods, and the prediction accuracy can be improved to 96.38%. ANFIS with LOO-CV approach is an effective approach for prediction of surface roughness in end milling process. © 2010 Elsevier Inc.

Cite

CITATION STYLE

APA

Dong, M., & Wang, N. (2011). Adaptive network-based fuzzy inference system with leave-one-out cross-validation approach for prediction of surface roughness. Applied Mathematical Modelling, 35(3), 1024–1035. https://doi.org/10.1016/j.apm.2010.07.048

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free