The role of high-latitude waves in the intraseasonal to seasonal variability of tropical upwelling in the Bbrewer-Dobson circulation

30Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The forcing of tropical upwelling in the Brewer-Dobson circulation (BDC) on intraseasonal to seasonal time scales is investigated in integrations of an idealized general circulation model, ECMWF Interim Re- Analysis, and lower-stratospheric temperature measurements from the (Advanced) Microwave Sounding Unit, with a focus on the extended boreal winter season. Enhanced poleward eddy heat fluxes in the high latitudes (458-908N) at the 100-hPa level are associated with anomalous tropical cooling and anomalous warming on the poleward side of the polar night jet at the 70-hPa level and above. In both the model and the observations, planetary waves entering the stratosphere at high latitudes propagate equatorward to the subtropics and tropics at levels above 70 hPa over an approximately 10-day period, exerting a force at sufficiently low latitudes to modulate the tropical upwelling in the upper branch of the BDC, even on time scales longer than the radiative relaxation time scale of the lower stratosphere. To the extent that they force the BDCvia downward as opposed to sideways control, planetary waves originating in high latitudes contribute to the seasonally varying climatological mean and the interannual variability of tropical upwelling at the 70-hPa level and above. Their influence upon the strength of the tropical upwelling, however, diminishes rapidly with depth below 70 hPa. In particular, tropical upwelling at the cold-point tropopause, near 100 hPa, appears to be modulated by variations in the strength of the lower branch of the BDC. © 2013 American Meteorological Society.

Cite

CITATION STYLE

APA

Ueyama, R., Gerber, E. P., Wallace, J. M., & Frierson, D. M. W. (2013). The role of high-latitude waves in the intraseasonal to seasonal variability of tropical upwelling in the Bbrewer-Dobson circulation. Journal of the Atmospheric Sciences, 70(6), 1631–1648. https://doi.org/10.1175/JAS-D-12-0174.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free