A conjecture on the minimal size of bound states

18Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

We conjecture that, in a renormalizable effective quantum field theory where the heaviest stable particle has mass m, there are no bound states with radius below 1/m (Bound State Conjecture). We are motivated by the (scalar) Weak Gravity Conjecture, which can be read as a statement forbidding certain bound states. As we discuss, versions for uncharged particles and their generalizations have shortcomings. This leads us to the suggestion that one should only constrain rather than exclude bound objects. In the gravitational case, the resulting conjecture takes the sharp form of forbidding the adiabatic construction of black holes smaller than 1/m. But this minimal bound-state radius remains non-trivial as MP → ∞, leading us to suspect a feature of QFT rather than a quantum gravity constraint. We find support in a number of examples which we analyze at a parametric level.

Cite

CITATION STYLE

APA

Freivogel, B., Gasenzer, T., Hebecker, A., & Leonhardt, S. (2020). A conjecture on the minimal size of bound states. SciPost Physics, 8(4). https://doi.org/10.21468/SciPostPhys.8.4.058

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free