Discriminative tracking methods use binary classification to discriminate between the foreground and background and have achieved some useful results. However, the use of labeled training samples is insufficient for them to achieve accurate tracking. Hence, discriminative classifiers must use their own classification results to update themselves, which may lead to feedback-induced tracking drift. To overcome these problems, we propose a semisupervised tracking algorithm that uses deep representation and transfer learning. Firstly, a 2D multilayer deep belief network is trained with a large amount of unlabeled samples. The nonlinear mapping point at the top of this network is subtracted as the feature dictionary. Then, this feature dictionary is utilized to transfer train and update a deep tracker. The positive samples for training are the tracked vehicles, and the negative samples are the background images. Finally, a particle filter is used to estimate vehicle position. We demonstrate experimentally that our proposed vehicle tracking algorithm can effectively restrain drift while also maintaining the adaption of vehicle appearance. Compared with similar algorithms, our method achieves a better tracking success rate and fewer average central-pixel errors.
CITATION STYLE
Cai, Y., Wang, H., Sun, X. Q., & Chen, L. (2017). Visual Vehicle Tracking Based on Deep Representation and Semisupervised Learning. Journal of Sensors, 2017. https://doi.org/10.1155/2017/6471250
Mendeley helps you to discover research relevant for your work.