Semantic segmentation is an important component in understanding the 3D point cloud scene. Whether we can effectively obtain local and global contextual information from points is of great significance in improving the performance of 3D point cloud semantic segmentation. In this paper, we propose a self-attention feature extraction module: the local transformer structure. By stacking the encoder layer composed of this structure, we can extract local features while preserving global connectivity. The structure can automatically learn each point feature from its neighborhoods and is invariant to different point orders. We designed two unique key matrices, each of which focuses on the feature similarities and geometric structure relationships between the points to generate attention weight matrices. Additionally, the cross-skip selection of neighbors is used to obtain larger receptive fields for each point without increasing the number of calculations required, and can therefore better deal with the junction between multiple objects. When the new network was verified on the S3DIS, the mean intersection over union was 69.1%, and the segmentation accuracies on the complex outdoor scene datasets Semantic3D and SemanticKITTI were 94.3% and 87.8%, respectively, which demonstrate the effectiveness of the proposed methods.
CITATION STYLE
Wang, Z., Wang, Y., An, L., Liu, J., & Liu, H. (2022). Local Transformer Network on 3D Point Cloud Semantic Segmentation. Information (Switzerland), 13(4). https://doi.org/10.3390/info13040198
Mendeley helps you to discover research relevant for your work.