Mathematical model of helical gear topography measurements and tooth flank errors separation

2Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

During large-size gear topological modification by form grinding, the helical gear tooth surface geometrical shape will be complex and it is difficult for the traditional scanning measurement to characterize the whole tooth surface. Therefore, in order to characterize the actual tooth surfaces, an on-machine topography measurement approach is proposed for topological modification helical gears on the five-axis CNC gear form grinding machine that can measure the modified gear tooth deviations on the machine immediately after grinding. Combined with gear form grinding kinematics principles, the mathematical model of topography measurements is established based on the polar coordinate method. The mathematical models include calculating trajectory of the centre of measuring probe, defining gear flanks by grid of points, and solving coordinate values of topology measurement. Finally, a numerical example of on-machine topography measurement is presented. By establishing the topography diagram and the contour map of tooth error, the tooth surface modification amount and the tooth flank errors are separated, respectively. Research results can serve as foundation for topological modification and tooth surface errors closed-loop feedback correction.

Cite

CITATION STYLE

APA

Wang, H., Deng, X., Han, J., Li, J., & Yang, J. (2015). Mathematical model of helical gear topography measurements and tooth flank errors separation. Mathematical Problems in Engineering, 2015. https://doi.org/10.1155/2015/176237

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free