Identification of RNA pseudouridine sites using deep learning approaches

9Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Pseudouridine(Ψ) is widely popular among various RNA modifications which have been confirmed to occur in rRNA, mRNA, tRNA, and nuclear/nucleolar RNA. Hence, identifying them has vital significance in academic research, drug development and gene therapies. Several laboratory techniques for Ψ identification have been introduced over the years. Although these techniques produce satisfactory results, they are costly, time-consuming and requires skilled experience. As the lengths of RNA sequences are getting longer day by day, an efficient method for identifying pseudouridine sites using computational approaches is very important. In this paper, we proposed a multi-channel convolution neural network using binary encoding. We employed k-fold cross-validation and grid search to tune the hyperparameters. We evaluated its performance in the independent datasets and found promising results. The results proved that our method can be used to identify pseudouridine sites for associated purposes. We have also implemented an easily accessible web server at http://103.99.176.239/ipseumulticnn/.

Cite

CITATION STYLE

APA

Aziz, A. Z. B., Al Mehedi Hasan, M., & Shin, J. (2021). Identification of RNA pseudouridine sites using deep learning approaches. PLoS ONE, 16(2 February). https://doi.org/10.1371/journal.pone.0247511

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free