Surgical data science: The new knowledge domain

42Citations
Citations of this article
149Readers
Mendeley users who have this article in their library.

Abstract

Healthcare in general, and surgery/interventional care in particular, is evolving through rapid advances in technology and increasing complexity of care, with the goal of maximizing the quality and value of care. Whereas innovations in diagnostic and therapeutic technologies have driven past improvements in the quality of surgical care, future transformation in care will be enabled by data. Conventional methodologies, such as registry studies, are limited in their scope for discovery and research, extent and complexity of data, breadth of analytical techniques, and translation or integration of research findings into patient care. We foresee the emergence of surgical/interventional data science (SDS) as a key element to addressing these limitations and creating a sustainable path toward evidence-based improvement of interventional healthcare pathways. SDS will create tools to measure, model, and quantify the pathways or processes within the context of patient health states or outcomes and use information gained to inform healthcare decisions, guidelines, best practices, policy, and training, thereby improving the safety and quality of healthcare and its value. Data are pervasive throughout the surgical care pathway; thus, SDS can impact various aspects of care, including prevention, diagnosis, intervention, or postoperative recovery. The existing literature already provides preliminary results, suggesting how a data science approach to surgical decision-making could more accurately predict severe complications using complex data from preoperative, intraoperative, and postoperative contexts, how it could support intraoperative decision-making using both existing knowledge and continuous data streams throughout the surgical care pathway, and how it could enable effective collaboration between human care providers and intelligent technologies. In addition, SDS is poised to play a central role in surgical education, for example, through objective assessments, automated virtual coaching, and robot-assisted active learning of surgical skill. However, the potential for transforming surgical care and training through SDS may only be realized through a cultural shift that not only institutionalizes technology to seamlessly capture data but also assimilates individuals with expertise in data science into clinical research teams. Furthermore, collaboration with industry partners from the inception of the discovery process promotes optimal design of data products as well as their efficient translation and commercialization. As surgery continues to evolve through advances in technology that enhance delivery of care, SDS represents a new knowledge domain to engineer surgical care of the future.

Cite

CITATION STYLE

APA

Vedula, S. S., & Hager, G. D. (2020, September 1). Surgical data science: The new knowledge domain. Innovative Surgical Sciences. De Gruyter. https://doi.org/10.1515/iss-2017-0004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free