By means of spin-polarized density functional theory (DFT) computations, we unravel the reaction mechanisms of catalytic CO oxidation on B-doped fullerene. It is shown that O2 species favors to be chemically adsorbed via side-on configuration at the hex-C-B site with an adsorption energy of -1.07 eV. Two traditional pathways, Eley-Rideal (ER) and Langmuir-Hinshelwood (LH) mechanisms, are considered for the CO oxidation starting from O2 adsorption. CO species is able to bind at the B-top site of the B-doped fullerene with an adsorption energy of -0.78 eV. Therefore, CO oxidation that occurs starting from CO adsorption is also taken into account. Second reaction of CO oxidation occurs by the reaction of CO + O → CO2 with a very high energy barrier of 1.56 eV. A trimolecular Eley-Rideal (TER) pathway is proposed to avoid leaving the O atom on the B-doped fullerene after the first CO oxidation. These predictions manifest that boron-doped fullerene is a potential metal-free catalyst for CO oxidation.
CITATION STYLE
Chen, K. Y., Wu, S. Y., & Chen, H. T. (2020). Unraveling Catalytic Mechanisms for CO Oxidation on Boron-Doped Fullerene: A Computational Study. ACS Omega, 5(44), 28870–28876. https://doi.org/10.1021/acsomega.0c04532
Mendeley helps you to discover research relevant for your work.