Uniform Vapor-Pressure-Based Chemical Vapor Deposition Growth of MoS2 Using MoO3 Thin Film as a Precursor for Coevaporation

35Citations
Citations of this article
85Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Chemical vapor deposition (CVD) is a powerful method employed for high-quality monolayer crystal growth of 2D transition metal dichalcogenides with much effort invested toward improving the growth process. Here, we report a novel method for CVD-based growth of monolayer molybdenum disulfide (MoS2) by using thermally evaporated thin films of molybdenum trioxide (MoO3) as the molybdenum (Mo) source for coevaporation. Uniform evaporation rate of MoO3 thin films provides uniform Mo vapors which promote highly reproducible single-crystal growth of MoS2 throughout the substrate. These high-quality crystals are as large as 95 μm and are characterized by scanning electron microscopy, Raman spectroscopy, photoluminescence spectroscopy, atomic force microscopy, and transmission electron microscopy. The bottom-gated field-effect transistors fabricated using the as-grown single crystals show n-type transistor behavior with a good on/off ratio of 106 under ambient conditions. Our results presented here address the precursor vapor control during the CVD process and is a major step forward toward reproducible growth of MoS2 for future semiconductor device applications.

Cite

CITATION STYLE

APA

Withanage, S. S., Kalita, H., Chung, H. S., Roy, T., Jung, Y., & Khondaker, S. I. (2018). Uniform Vapor-Pressure-Based Chemical Vapor Deposition Growth of MoS2 Using MoO3 Thin Film as a Precursor for Coevaporation. ACS Omega, 3(12), 18943–18949. https://doi.org/10.1021/acsomega.8b02978

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free