Sequence and structure comparisons of various glutamate dehydrogenases (GDH) and other nicotinamide nucleotide-dependent dehydrogenases have potentially implicated certain residues in coenzyme binding and discrimination. We have mutated key residues in Clostridium symbiosum NAD+-specific GDH to investigate their contribution to specificity and to enhance acceptance of NADPH. Comparisons with E. coli NADPH-dependent GDH prompted design of mutants F238S, P262S, and F238S/P262S, which were purified and assessed at pH 6.0, 7.0, and 8.0. They showed markedly increased catalytic efficiency with NADPH, especially at pH 8.0 (∼170-fold for P262S and F238S/P262S with relatively small changes for NADH). A positive charge introduced through the D263K mutation also greatly increased catalytic efficiency with NADPH (over 100-fold at pH 8) and slightly decreased activity with NADH. At position 242, "P6" of the "core fingerprint," where NAD+- and NADP+-dependent enzymes normally have Gly or Ala, respectively, clostridial GDH already has Ala. Replacement with Gly produced negligible shift in coenzyme specificity. © 2011 Joanna Griffin and Paul C. Engel.
CITATION STYLE
Griffin, J., & Engel, P. C. (2011). An examination by site-directed mutagenesis of putative key residues in the determination of coenzyme specificity in clostridial NAD+-dependent glutamate dehydrogenase. Enzyme Research, 2011(1). https://doi.org/10.4061/2011/595793
Mendeley helps you to discover research relevant for your work.