Phytopathogenic populations need genetic flexibility to adapt to continually improving plant defences. The gene pool transferred by broad-host-range plasmids provides genetic variation for the population. However, a population has to balance this benefit with the risk of acquiring deleterious foreign DNA. This could be achieved by modulating the ratio of individuals with high or low permissiveness to broad-host-range plasmids. We investigated whether plasmid uptake varied among genetically indistinguishable isolates of Dickeya sp. from a 400 m2 field plot. The transfer frequencies of broad-host-range IncP-1 plasmids from Escherichia coli to Dickeya differed significantly among isolates. The transfer frequencies for plasmids pTH10 and pB10 of the divergent α- and β-subgroups of IncP-1, respectively, correlated well. Strains that differed in permissiveness for these plasmids by orders of magnitude were not distinguishable by other phenotypic traits analysed, by genomic fingerprints or hrpN gene sequences. Such strains were isolated in close vicinity and from different plots of the field, indicating a reasonably fast genetic mechanism of switching between low and high permissiveness. © 2010 Federation of European Microbiological Societies.
CITATION STYLE
Heuer, H., Ebers, J., Weinert, N., & Smalla, K. (2010). Variation in permissiveness for broad-host-range plasmids among genetically indistinguishable isolates of Dickeya sp. from a small field plot. FEMS Microbiology Ecology, 73(1), 190–196. https://doi.org/10.1111/j.1574-6941.2010.00880.x
Mendeley helps you to discover research relevant for your work.