Flash flood, one of the most devastating weather-related hazards in the world, has become more and more frequent in past decades. For the purpose of flood mitigation, it is necessary to understand the distribution of flash flood risk. In this study, artificial intelligence (Least squares support vector machine: LSSVM) and classical canonical method (Logistic regression: LR) are used to assess the flash flood risk in the Yunnan Province based on historical flash flood records and 13 meteorological, topographical, hydrological and anthropological factors. Results indicate that: (1) the LSSVM with Radial basis function (RBF) Kernel works the best (Accuracy = 0.79) and the LR is the worst (Accuracy = 0.75) in testing; (2) flash flood risk distribution identified by the LSSVM in Yunnan province is near normal distribution; (3) the high-risk areas are mainly concentrated in the central and southeastern regions, where with a large curve number; and (4) the impact factors contributing the flash flood risk map from higher to low are: Curve number > Digital elevation > Slope > River density > Flash Flood preventions > TopographicWetness Index > annual maximum 24 h precipitation > annual maximum 3 h precipitation.
CITATION STYLE
Ma, M., Liu, C., Zhao, G., Xie, H., Jia, P., Wang, D., … Hong, Y. (2019). Flash flood risk analysis based on machine learning techniques in the Yunnan Province, China. Remote Sensing, 11(2). https://doi.org/10.3390/rs11020170
Mendeley helps you to discover research relevant for your work.