Friction and tribochemical reactions occurring at shearing interfaces of nanothin silver films on various substrates

19Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The tribological and tribochemical properties of 5-10 nm thick Ag films sliding on various metal and inorganic substrates were measured using a surface forces apparatus coupled with ex situ x-ray photoelectron spectroscopy. We observed enhanced chemical reactivity in the sheared regions compared to the unsheared regions, which we attribute to significant frictional heating in agreement with two recent simulations. It is also found that the initial topography (roughness) of the films plays a significant role in determining the friction, wear, and tribochemical reactions. The larger the surface roughness, the larger are the friction coefficients. Initially smooth surfaces, forming large continuous junctions, create large wear debris particles; whereas initially rough surfaces, forming many small junctions, create many small particles. Even though initially smooth surfaces are chemically less reactive than initially rough surfaces, they are tribochemically more reactive, forming two to three times more oxides of silver during shearing than under static conditions and organometals of silver that under normal (static) conditions do not form. The chemical reactions observed cannot be explained without including the tribological processes, such as the local stresses, temperature rises, and type of wear produced by the shearing surfaces. © 2006 American Institute of Physics.

Cite

CITATION STYLE

APA

Akbulut, M., Alig, A. R. G., & Israelachvili, J. (2006). Friction and tribochemical reactions occurring at shearing interfaces of nanothin silver films on various substrates. Journal of Chemical Physics, 124(17). https://doi.org/10.1063/1.2184310

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free