Theoretical modelling of MWIR thermoelectrically cooled nBn HgCdTe detector

12Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

The paper reports on the medium wavelength infrared (MWIR) unipolar barrier infrared detector (UBIRD) nBn/B-n type (n-type barrier) HgCdTe detector's photoelectrical performance. The UBIRD nBn/B-n type HgCdTe detector was modelled using commercially available software APSYS. Detailed analysis of the detector's performance (such as dark current, photocurrent, responsivity, and detectivity) versus bias voltage, operating temperatures, and structural parameters (cap, barrier, and absorber's doping as well as cap and barrier compositions) were performed pointing out optimal working conditions. Both conduction and valence band alignments of the HgCdTe nBn/B-n type detector structure was simulated stressing their importance on detectors performance. It was shown that higher operation temperature (HOT) conditions achieved by commonly used thermoelectric (TE) coolers allow to obtain detectivities of D= (3-10)×109 cmHz1/2/W at T = 200 K for detectors with cut-off wavelength of 5.2 μm The differential resistance area product of RA = 0.15-0.4 cm2 at T = 230 K for bias voltage V = 50 mV was estimated. Finally, the state of the art of UBIRD HgCdTe nBn/B-n type detector performance was compared to InAs/GaSb/B-Al0.2Ga0.8Sb T2SLs nBn detector, InAs/GaSb T2SLs PIN and the HOT HgCdTe bulk photodiodes' operated at near-room temperature (T = 230 K). It was shown that the RA product of the MWIR UBIRD nBn/B-n type HgCdTe detector can reach a comparable level to the state of the art of the HgCdTe HOT bulk photodiodes and two types of type-II superlattice detectors: PIN photodiodes and nBn detectors.

Cite

CITATION STYLE

APA

Martyniuk, P., & Rogalski, A. (2013). Theoretical modelling of MWIR thermoelectrically cooled nBn HgCdTe detector. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(1), 211–220. https://doi.org/10.2478/bpasts-2013-0020

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free