A high-speed square root algorithm in extension fields

1Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A square root (SQRT) algorithm in GF(pm) (m = r 0r1⋯ rn-1-12d, ri: odd prime, d > 0: integer) is proposed in this paper. First, the Tonelli-Shanks algorithm is modified to compute the inverse SQRT in GF(p 2d ), where most of the computations are performed in the corresponding subfields GF(p2i ) for 0 ≤ i ≤ d-1. Then the Frobenius mappings with an addition chain are adopted for the proposed SQRT algorithm, in which a lot of computations in a given extension field GF(p m) are also reduce to those in a proper subfield by the norm computations. Those reductions of the field degree increase efficiency in the SQRT implementation. More specifically the Tonelli-Shanks algorithm and the proposed algorithm in GF(p22), GF(p44) and GF(p 88) were implemented on a Pentium4 (2.6 GHz) computer using the C++ programming language. The computer simulations showed that, on average, the proposed algorithm accelerates the SQRT computation by 25 times in GF(p 22), by 45 times in GF(p44), and by 70 times in GF(p 88), compared to the Tonelli-Shanks algorithm, which is supported by the evaluation of the number of computations. © Springer-Verlag Berlin Heidelberg 2006.

Cite

CITATION STYLE

APA

Katou, H., Wang, F., Nogami, Y., & Morikawa, Y. (2006). A high-speed square root algorithm in extension fields. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 4296 LNCS, pp. 94–106). Springer Verlag. https://doi.org/10.1007/11927587_10

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free