Due to market price uncertainty and volatility, electricity sales companies today are facing greater risks in regard to the day-ahead market and the real-time market. Along with introducing the Time of Use (TOU) price for the customer as a type of balancing resource to avoid market risk, electricity sales companies should adopt the market risk-aversion method to reduce the high cost of ancillary services in the real-time market by using multi-level market transactions, as well as to provide a reference for the profits of power companies. In this paper, we establish a non-linear mathematical model based on stochastic programming by using conditional value-at-risk (CVaR) to measure transaction strategy risk. For the market price and consumer electricity load as the uncertain factors of multi-level market transactions of electricity sales companies, the optimal objective was to maximize the revenue of electricity sales companies and minimize the peak-valley differences in the system, which is solved by using mixed-integer linear programming (MILP). Finally, we provide an example to analyze the effect of the fluctuation degree of customer load and market price on the profit of electricity sales companies under different confidence coefficients.
CITATION STYLE
Wang, G., Tan, Z., Lin, H., Tan, Q., Yang, S., Ju, L., & Ren, Z. (2019). Multi-Level market transaction optimization model for electricity sales companies with energy storage plant. Energies, 12(1). https://doi.org/10.3390/en12010145
Mendeley helps you to discover research relevant for your work.