The left hemisphere of the human cerebral cortex is dominant for processing rapid acoustic stimuli, including speech, and this specialized activity is preceded by processing in the auditory brainstem. It is not known to what extent the integrity of brainstem encoding of speech impacts patterns of asymmetry at cortex. Here, we demonstrate that the precision of temporal encoding of speech in auditory brainstem predicts cerebral asymmetry for speech sounds measured in a group of children spanning a range of language skills. Results provide strong evidence that timing deficits measured at the auditory brainstem negatively impact rapid acoustic processing by specialized structures of cortex, and demonstrate a delicate relationship between cortical activation patterns and the temporal integrity of cortical input. Copyright © 2006 Society for Neuroscience.
CITATION STYLE
Abrams, D. A., Nicol, T., Zecker, S. G., & Kraus, N. (2006). Auditory brainstem timing predicts cerebral asymmetry for speech. Journal of Neuroscience, 26(43), 11131–11137. https://doi.org/10.1523/JNEUROSCI.2744-06.2006
Mendeley helps you to discover research relevant for your work.