In this study, we combined both a high strength Al-8%Zn-3%Mg aluminum matrix and a reinforcing contribution of Al3Ni intermetallics in Al8Zn7Ni3Mg hypereutectic alloy with a tuned microstructure via a variation of cooling rates from 0.1 K/s to 2.3 × 105 K/s. Using the Thermo-Calc software, we analyzed the effect of nickel content on the phase equilibria during solidification and found out that 7%Ni provides a formation of equal fractions of primary (6.5 vol.%) and eutectic (6.3 vol.%) crystals of the Al3Ni phase. Using microstructural analysis, a refinement of intermetallics with an increase in cooling rate was observed. It is remarkable that the structure after solidification at ~103 K/s across 1 mm flake casting consists of a quasi-eutectic with 1.5 μm Al3Ni fibers, while an increase in the cooling rate to ~105 K/s after melt spinning leads to the formation of 50 nm equiaxed Al3Ni particles. Under these conditions, the alloy showed an aging response at 200 °C, resulting in hardness of 200 HV and 220 HV, respectively. After 470 °C annealing, the fibers in the 1 mm sample evolved to needles. However, in melt-spun ribbons, the particles were kept globular and small-sized. Overall, the results may greatly contribute to the development of new eutectic type composites for rapid solidification methods.
CITATION STYLE
Shurkin, P., Akopyan, T., Korotkova, N., Prosviryakov, A., Bazlov, A., Komissarov, A., & Moskovskikh, D. (2020). Microstructure and hardness evolution of Al8Zn7ni3mg alloy after casting at very different cooling rates. Metals, 10(6). https://doi.org/10.3390/met10060762
Mendeley helps you to discover research relevant for your work.