Built-up terrain wave propagation by Fourier split-step parabolic wave equation-ray optical techniques

3Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Fourier split-step (FSS) solutions of the parabolic wave equation (PWE) represent wave fields in terms of plane wave decompositions. However, those field solutions are usually only valid in the air space above built-up terrain, whereas field predictions for modern wireless systems often require knowledge of the fields on a street level. Since FSS PWE solutions with large step sizes are not applicable for field computations between irregular scattering obstacles such as buildings, this problem is overcome by a two-step approach combining the FSS solution of the PWE with ray optical techniques to compute the fields at ground level in wooded and urbanized areas. To account for the great variety of propagation effects in a statistical sense, direct rays, reflected rays, diffracted rays and attenuated rays at typical receiver locations are included into the considerations. Comparisons to a wide variety of measured data show that this two-step approach produces better results than state of the art semiempirical field prediction techniques.

Cite

CITATION STYLE

APA

Eibert, T. F. (2003). Built-up terrain wave propagation by Fourier split-step parabolic wave equation-ray optical techniques. Radio Science, 38(2). https://doi.org/10.1029/2002RS002743

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free