Robust Finite-State Controllers for Uncertain POMDPs

25Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Uncertain partially observable Markov decision processes (uPOMDPs) allow the probabilistic transition and observation functions of standard POMDPs to belong to a so-called uncertainty set. Such uncertainty, referred to as epistemic uncertainty, captures uncountable sets of probability distributions caused by, for instance, a lack of data available. We develop an algorithm to compute finite-memory policies for uPOMDPs that robustly satisfy specifications against any admissible distribution. In general, computing such policies is theoretically and practically intractable. We provide an efficient solution to this problem in four steps. (1) We state the underlying problem as a nonconvex optimization problem with infinitely many constraints. (2) A dedicated dualization scheme yields a dual problem that is still nonconvex but has finitely many constraints. (3) We linearize this dual problem and (4) solve the resulting finite linear program to obtain locally optimal solutions to the original problem. The resulting problem formulation is exponentially smaller than those resulting from existing methods. We demonstrate the applicability of our algorithm using large instances of an aircraft collision-avoidance scenario and a novel spacecraft motion planning case study.

Cite

CITATION STYLE

APA

Cubuktepe, M., Jansen, N., Junges, S., Marandi, A., Suilen, M., & Topcu, U. (2021). Robust Finite-State Controllers for Uncertain POMDPs. In 35th AAAI Conference on Artificial Intelligence, AAAI 2021 (Vol. 13B, pp. 11792–11800). Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v35i13.17401

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free