Computational investigation of the delamination of polymer coatings during stent deployment

41Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Recent advances in angioplasty have involved the application of polymer coatings to stent surfaces for purposes of drug delivery. Given the high levels of deformation developed in the plastic hinge of a stent during deployment, the achievement of an intact bond between the coating and the stent presents a significant mechanical challenge. Problems with coating delamination have been reported in recent experimental studies. In this paper, a cohesive zone model of the stent-coating interface is implemented in order to investigate coating debonding during stent deployment. Simulations reveal that coatings debond from the stent surface in tensile regions of the plastic hinge during deployment. The critical parameters governing the initiation of delamination include the coating thickness and stiffness, the interface strength between the coating and stent surface, and the curvature of the plastic hinge. The coating is also computed to debond from the stent surface in compressive regions of the plastic hinge by a buckling mechanism. Computed patterns of coating delamination correlate very closely with experimental images. This study provides insight into the critical factors governing coating delamination during stent deployment and offers a predictive framework that can be used to improve the design of coated stents. © 2010 Biomedical Engineering Society.

Cite

CITATION STYLE

APA

Hopkins, C. G., McHugh, P. E., & McGarry, J. P. (2010). Computational investigation of the delamination of polymer coatings during stent deployment. Annals of Biomedical Engineering, 38(7), 2263–2273. https://doi.org/10.1007/s10439-010-9972-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free