A xylose-based glycosaminoglycan (GAG) core was recently identified at a Ser residue in the linker sequence of a recombinant Fc fusion protein. The linker sequence, G-S-G-G-G-G, and an upstream acidic residue were serving as a substrate for O-xylosyltransferase, resulting in a major glycan composed of Xyl-Gal-Gal-GlcA and other minor intermediates. In this paper, a portion of an unrelated protein was fused to the C-terminus of an IgG Fc domain using the common (G4S) 4 linker repeat. This linker resulted in a heterogenous population of xylose-based glycans all containing at least a core Xyl. Commonly observed glycan structures include GAG-related di-, tri-, tetra-, and penta-saccharides (e.g., Xyl-Gal, Xyl-Gal-Gal, Xyl-Gal-Gal-GlcA, and Xyl-Gal-Gal-GlcA-HexNAc), as well as Xyl-Gal-Neu5Ac. Following alkaline phosphatase or sialidase treatment combined with CID fragmentation, low-level glycans with a mass addition of 79.9 Da were confirmed to be a result of phosphorylated xylose. A minute quantity of phosphorylated GAG pentasaccharides may also be sulfated (also 79.9 Da), possibly at the HexNAc moiety due to non-reactivity to alkaline phosphatase. The xylose moiety may be randomly incorporated in one of the three G-S-G sequence motifs; and the linker peptide shows evidence for multiple additions of xylose at very low levels.
CITATION STYLE
Spahr, C., Shi, S. D.-H., & Lu, H. S. (2014). O-Glycosylation of glycine-serine linkers in recombinant Fc-fusion proteins. MAbs, 6(4), 904–914. https://doi.org/10.4161/mabs.28763
Mendeley helps you to discover research relevant for your work.