Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s

1Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A dramatic increase in the number of outbreaks of dengue has recently been reported, and climate change is likely to extend the geographical spread of the disease. In this context, this paper shows how a neural network approach can incorporate dengue and COVID-19 data as well as external factors (such as social behaviour or climate variables), to develop predictive models that could improve our knowledge and provide useful tools for health policy makers. Through the use of neural networks with different social and natural parameters, in this paper we define a Correlation Model through which we show that the number of cases of COVID-19 and dengue have very similar trends. We then illustrate the relevance of our model by extending it to a Long short-term memory model (LSTM) that incorporates both diseases, and using this to estimate dengue infections via COVID-19 data in countries that lack sufficient dengue data.

Cite

CITATION STYLE

APA

Bergero, P., Schaposnik, L. P., & Wang, G. (2023). Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-27983-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free