We report the discovery of remarkable photo-physical phenomena with characteristics unique to epitaxial graphene grown on 6H-SiC (000-1). Surprisingly, the electrical resistance of graphene increases under light illumination in contrast to conventional materials where it normally decreases. The resistance shows logarithmic temperature dependences which may be attributed to an Altshuler-Aronov effect. We show that the photoresistance depends on the frequency of the irradiating light, with three lasers (red, green, and violet) used to demonstrate the phenomenon. The counterintuitive rise of the positive photoresistance may be attributed to a creation of trapped charges upon irradiation. We argue that the origin of the photoresistance is related to the texture formed by the graphene flakes. Photovoltage also exists and increases with light intensity. However, its value saturates quickly with irradiation and does not change with time. The saturation of the photovoltage may be associated with the formation of a quasi-equilibrium state of the excited electrons and holes associated with a charge redistribution between the graphene and SiC substrate. The obtained physical picture is in agreement with the photoresistance measurements: X-ray photoelectron spectrometry "XPS", atomic force microscopy "AFM", Raman spectroscopy and the magnetic dependence of photoresistance decay measurements. We also observed non-decaying photoresistance and linear magnetoresistance in magnetic fields up to 1 T. We argue that this is due to topological phases spontaneously induced by persistent current formation within the graphene flake edges by magnetic fields.
CITATION STYLE
Ben Gouider Trabelsi, A., Kusmartsev, F. V., Gaifullin, M. B., Forrester, D. M., Kusmartseva, A., & Oueslati, M. (2017). Morphological imperfections of epitaxial graphene: From a hindrance to the generation of new photo-responses in the visible domain. Nanoscale, 9(32), 11463–11474. https://doi.org/10.1039/c6nr08999b
Mendeley helps you to discover research relevant for your work.