Identification of significant periodic genes in microarray gene expression data

28Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: One frequent application of microarray experiments is in the study of monitoring gene activities in a cell during cell cycle or cell division. A new challenge for analyzing the microarray experiments is to identify genes that are statistically significantly periodically expressed during the cell cycle. Such a challenge occurs due to the large number of genes that are simultaneously measured, a moderate to small number of measurements per gene taken at different time points, and high levels of non-normal random noises inherited in the data. Results: Based on two statistical hypothesis testing methods for identifying periodic time series, a novel statistical inference approach, the C&G procedure, is proposed to effectively screen out statistically significantly periodically expressed genes. The approach is then applied to yeast and bacterial cell cycle gene expression data sets, as well as to human fibroblasts and human cancer cell line data sets, and significantly periodically expressed genes are successfully identified. Conclusions: The C&G procedure proposed is an effective method for identifying statistically significant periodic genes in microarray time series gene expression data. © 2005 Chen, licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Chen, J. (2005). Identification of significant periodic genes in microarray gene expression data. BMC Bioinformatics, 6. https://doi.org/10.1186/1471-2105-6-286

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free