Quartz Vein Formation and Deformation during Porphyry Cu Deposit Formation: A Microstructural and Geochemical Analysis of the Butte, Montana, Ore Deposit

2Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Hydrothermal quartz veins from the Butte deposit display euhedral and mottled cathodoluminescent (CL) textures that reflect the growth and deformation history of quartz crystals. A CL-euhedral texture consists of oscillatory dark-light zonations that record primary precipitation from an aqueous fluid. The origin of a CL-mottled texture, which consists of irregularly distributed dark and light portions, is less clear. Previous work showed that in some veins, CL-euhedral and CL-mottled crystals coexist, but the processes leading to their formation and coexistence were unknown. We find that CL-mottled crystals occur predominantly along the wall rock fracture surface and in vein centers and that CL-euhedral cockscomb quartz protrudes from the mottled layers along the wall rock. We infer that the mottled crystals formed by strain-induced recrystallization that was preferentially accommodated by the rheologically weaker layers of noncockscomb quartz because cockscomb crystals are in hard glide orientations relative to adjacent noncockscomb layers. During strain, crystals in noncockscomb layers that are not initially susceptible to slip can rotate in their deforming matrix until they deform plastically. Some of the CL-mottled crystals exhibit a relict CL-euhedral texture (“ghost bands”) whereby bright bands have been blurred and deformed owing to Ti redistribution facilitated by grain boundary migration. The edges of some CLeuhedral crystals become CL-mottled by localized grain boundary migration along adjacent crystals that do not align perfectly. Throughout the veins, CL-mottled crystals are randomly oriented, indicating that small deviatoric stresses were sufficient to drive recrystallization and mobilization of trace elements. Ti concentrations in CL-mottled crystals (23-47 ppm Ti; mean of 31 ppm) overlap those of CL-euhedral dark growth bands (16-40 ppm Ti; mean of 25 ppm Ti) in neighboring CL-euhedral crystals. Average Ti concentrations in CL-mottled quartz and CL-euhedral dark growth bands correspond to temperature estimates of 600°C (31 ppm Ti; CL-mottled) and 619°C (25 ppm Ti; dark bands), which are in good agreement with previous quartz precipitation temperature estimates based on independent thermobarometers. We conclude that recrystallization resets CL-mottled Ti concentrations close to the equilibrium value for the conditions of deformation and that CL-dark growth bands record near-equilibrium Ti concentrations. Recognition of widespread quartz recrystallization in porphyry Cu deposits underscores the significant role that strain plays in deposit formation. Individual veins host crystals that preserve conditions of primary growth and other crystals that preserve conditions of deformation and thermal overprint. Textural information is key to accurately interpreting trace element data and identifying different stages of vein formation. Our suggestion that CL-dark bands are the best candidates for near-equilibrium growth will aid the interpretation of trace element zoning in other hydrothermal systems

Cite

CITATION STYLE

APA

Acosta, M. D., Reed, M. H., & Watkins, J. M. (2022). Quartz Vein Formation and Deformation during Porphyry Cu Deposit Formation: A Microstructural and Geochemical Analysis of the Butte, Montana, Ore Deposit. Lithosphere, 2022(1). https://doi.org/10.2113/2022/3196601

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free