The obstruction of traditional chemical activation lies in the addition of excessive catalysts to prepare the highly porous graphitic activated carbon (HPGAC), we propose the hydrothermal pretreatment-assisted chemical activation method to synthesize HPGAC as electrode materials using a small amount of Na-based catalysts (20 wt %). Hydrolysis accompanied by the strong depolymerization and reorganization of the coal framework is beneficial to the removal of different kinds of oxygen-containing structures (including cross-linking bonds, functional groups, and heterocycles) from lignite; thus, the deoxidization effect of hydrothermal carbonization (HTC) on hydrochar gradually strengthens with the increase in pretreatment temperature from 180 to 300 °C, resulting in the formation of a lot of disordered nanostructures and a smooth and compact surface. In the subsequent chemical activation stage, the microstructure of hydrochar is beneficial to the formation of a lot of graphene-like sheets and developed micropores even under a small amount of Na-based catalysts (20 wt %). The as-obtained C-HTC-300 with a highly ordered microstructure and a high specific surface area (SBET) of 1945.33 m2/g has an excellent electrochemical performance. Compared with a large consumption of catalyst for synthesizing HPGAC in traditional chemical activation, the hydrothermal pretreatment-assisted method meets the environmental protection and low-cost preparation requirements.
CITATION STYLE
Liu, D., Xu, B., Zhu, J., Tang, S., Xu, F., Li, S., … Chen, G. (2020). Preparation of Highly Porous Graphitic Activated Carbon as Electrode Materials for Supercapacitors by Hydrothermal Pretreatment-Assisted Chemical Activation. ACS Omega, 5(19), 11058–11067. https://doi.org/10.1021/acsomega.0c00938
Mendeley helps you to discover research relevant for your work.