Two series of derivatives of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), including a dechlorinated analog of W-7 (W-5) and various aminoalkyl chain analogs of W-7 (A-3, A-4, A-5, I-240, A-6) were synthesized and their structure-activity relationships with calmodulin antagonistic actions and their potencies in inhibiting human platelet aggregation in vitro were investigated. Their binding affinities to calmodulin in the presence of 100 μM Ca2+ were dependent both on the chlorination of the naphthalene ring and on the length of aminoalkyl chain. The ability of these derivatives to inhibit Ca2+-dependent phosphorylation of 20,000-dalton mycosin light chain from platelets correlated well with the magnitude of their binding affinity to calmodulin. W-7 (10-100 μM) inhibited in a dose-dependent manner platelet aggregation induced by collagen (2 μg/ml), ADP (5 μM), epinephrine (1 μg/ml), sodium arachidonate (0.83 mM), thrombin (0.125 U/ml), and A-23187 (10 μM). The IC50 value (concentration producing 50% inhibition of aggregation) of W-7 was lower in arachidonate- and collagen-induced aggregation than in ADP- or epinephrine-induced aggregation. A good correlation between the potency in inhibition of collagen-induced aggregation by W-7 and its derivatives and their affinities to calmodulin was obtained (r = 0.94). Thus, the inhibitory mechanism of these compounds may be due to their effect on Ca2+-calmodulin-dependent processes, such as 20,000-dalton myosin light chain phosphorylation. These data also support the hypothesis that the calmodulin-mediated system has an important role in platelet function.
CITATION STYLE
Nishikawa, M., & Hidaka, H. (1982). Role of calmodulin in platelet aggregation. Structure-activity relationship of calmodulin antagonists. Journal of Clinical Investigation, 69(6), 1348–1355. https://doi.org/10.1172/JCI110574
Mendeley helps you to discover research relevant for your work.