A series of isostructural Ln3O2(CN3) (Ln=La, Eu, Gd, Tb, Ho, Yb) oxoguanidinates was synthesized under high-pressure (25–54 GPa) high-temperature (2000–3000 K) conditions in laser-heated diamond anvil cells. The crystal structure of this novel class of compounds was determined via synchrotron single-crystal X-ray diffraction (SCXRD) as well as corroborated by X-ray absorption near edge structure (XANES) measurements and density functional theory (DFT) calculations. The Ln3O2(CN3) solids are composed of the hitherto unknown CN35− guanidinate anion—deprotonated guanidine. Changes in unit cell volumes and compressibility of Ln3O2(CN3) (Ln=La, Eu, Gd, Tb, Ho, Yb) compounds are found to be dictated by the lanthanide contraction phenomenon. Decompression experiments show that Ln3O2(CN3) compounds are recoverable to ambient conditions. The stabilization of the CN35− guanidinate anion at ambient conditions provides new opportunities in inorganic and organic synthetic chemistry.
CITATION STYLE
Aslandukov, A., Jurzick, P. L., Bykov, M., Aslandukova, A., Chanyshev, A., Laniel, D., … Dubrovinsky, L. (2023). Stabilization Of The CN35− Anion In Recoverable High-pressure Ln3O2(CN3) (Ln=La, Eu, Gd, Tb, Ho, Yb) Oxoguanidinates. Angewandte Chemie - International Edition, 62(47). https://doi.org/10.1002/anie.202311516
Mendeley helps you to discover research relevant for your work.