One salient function of social robots is to play the role of facilitator to enhance the harmony state of multi-party social interactions so that every human participant is encouraged and motivated to engage actively. However, it is challenging to handcraft the behavior of social robots to achieve this objective. One promising approach is for the robot to learn from human teachers. This paper reports the findings of an empirical test to determine the optimal experiment condition for a robot to learn verbal and nonverbal strategies to facilitate a multi-party interaction. First, the modified L8 Orthogonal Array (OA) is used to design a fractional factorial experiment condition using factors like the type of human facilitator, group size and stimulus type. The response of OA is the harmony state explicitly defined using the speech turn-taking between speakers and represented using metrics extracted from the first order Markov transition matrix. Analyses of Main Effects and ANOVA suggest the type of human facilitator and group size are significant factors affecting the harmony state. Therefore, we propose the optimal experiment condition to train a facilitator robot using high school teachers as human teachers and group size larger than four participants.
CITATION STYLE
Chew, J. Y., & Nakamura, K. (2023). Who to Teach a Robot to Facilitate Multi-party Social Interactions? In ACM/IEEE International Conference on Human-Robot Interaction (pp. 127–131). IEEE Computer Society. https://doi.org/10.1145/3568294.3580056
Mendeley helps you to discover research relevant for your work.