An efficient technique based on cubic B-spline functions for solving time-fractional advection diffusion equation involving Atangana–Baleanu derivative

20Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The present paper deals with cubic B-spline approximation together with θ-weighted scheme to obtain numerical solution of the time fractional advection diffusion equation using Atangana–Baleanu derivative. To discretize the Atangana–Baleanu time derivative containing a non-singular kernel, finite difference scheme is utilized. The cubic basis functions are associated with spatial discretization. The current discretization scheme used in the present study is unconditionally stable and the convergence is of order O(h2+ Δ t2). The proposed scheme is validated through some numerical examples which reveal the current scheme is feasible and quite accurate.

Cite

CITATION STYLE

APA

Shafiq, M., Abbas, M., Abualnaja, K. M., Huntul, M. J., Majeed, A., & Nazir, T. (2022). An efficient technique based on cubic B-spline functions for solving time-fractional advection diffusion equation involving Atangana–Baleanu derivative. Engineering with Computers, 38(1), 901–917. https://doi.org/10.1007/s00366-021-01490-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free