Background: Currently, numerous animal studies have shown that exposure to commonly used general anesthetics during pregnancy may cause neurocognitive impairment in the offspring. Reportedly, exposure to sevoflurane during mid-trimester of pregnancy can inhibit proliferation of neural stem cells (NSCs) and lead to early apoptosis. Whether exposure to sevoflurane during pregnancy affects the differentiation of NSCs remains unclear. Methods: In the present study, pregnant rats were exposed to 3% sevoflurane once for 2 h on gestational day 14 (G14) or 3 times for 2 h on G13, G14, and G15. Next, the differentiation of NSCs was measured using neuron marker -tubulin III and astrocyte marker glial fibrillary acidic protein (GFAP) in fetal brain tissues 24 h and 72 h after anesthesia and in hippocampus on postnatal day 28. Primary cultured rat NSCs were exposed to 4.1% sevoflurane to explore the mechanism. Results: The results showed that during mid-trimester, multiple exposures to sevoflurane can cause premature differentiation of NSCs in developing brains of offspring and lead to long-term neuron reduction and astrocyte proliferation in hippocampus. The data from the present study indicated that repeated exposure to sevoflurane downregulated atrophin-1 (ATN1) expression and caused early differentiation of NSCs. Overexpression of ATN1 via lentivirus transfection attenuated the influence of sevoflurane. Using dual luciferase assay, ATN1 was found to be a target gene of microRNA-410-3p (miR-410-3p). MiR-410-3p suppression via lentivirus transfection recovered the ATN1 expression and differentiation of NSCs. Conclusions: The results from the present study demonstrated that repeated exposure to sevoflurane leads to early differentiation of NSCs and long-term effects via the miR-410-3p/ATN1 pathway.
CITATION STYLE
Zhang, Y., Wu, Z., Li, X., Wan, Y., Zhang, Y., & Zhao, P. (2020). Maternal sevoflurane exposure affects differentiation of hippocampal neural stem cells by regulating miR-410-3p and ATN1. Stem Cell Research and Therapy, 11(1). https://doi.org/10.1186/s13287-020-01936-9
Mendeley helps you to discover research relevant for your work.