Colony-stimulating factor-1 (CSF-1) stimulates motility and cytoplasmic spreading in mature osteoclasts. Therefore, we examined the cellular events and intracellular signaling pathways that accompany CSF-1-induced spreading in normal osteoclasts. To explore the role c-src plays in these processes, we also studied osteoclasts prepared from animals with targeted disruption of the src gene. In normal osteoclasts, CSF-1 treatment induces rapid cytoplasmic spreading, with redistribution of F-actin from a well-delineated central attachment ring to the periphery of the cell. CSF-1 increases membrane phosphotyrosine staining in osteoclasts and induces the phosphorylation of several cellular proteins in cultured, osteoclast-like cells, including c-fms, c-src, and an 85-kD Grb2-binding protein. Src kinase activity is increased threefold after CSF-1 treatment. In src- cells, no attachment ring is present, and CSF-1 fails to induce spreading or a change in the pattern of F-actin distribution. Although c-fms becomes phosphorylated after CSF-1 treatment, the 85-kD protein is significantly less phosphorylated in src- osteoclast-like cells. These results indicate that c-src is critical for the normal cytoskeletal architecture of the osteoclast, and, in its absence, the spreading response induced by CSF-1 is abrogated, and downstream signaling from c-fms is altered.
CITATION STYLE
Insogna, K. L., Sahni, M., Grey, A. B., Tanaka, S., Horne, W. C., Neff, L., … Baron, R. (1997). Colony-stimulating factor-1 induces cytoskeletal reorganization and c- src-dependent tyrosine phosphorylation of selected cellular proteins in rodent osteoclasts. Journal of Clinical Investigation, 100(10), 2476–2485. https://doi.org/10.1172/JCI119790
Mendeley helps you to discover research relevant for your work.