Analysis of the dependence of critical electric field on semiconductor bandgap

33Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Understanding of semiconductor breakdown under high electric fields is an important aspect of materials’ properties, particularly for the design of power devices. For decades, a power-law has been used to describe the dependence of material-specific critical electrical field (Ecrit) at which the material breaks down and bandgap (Eg). The relationship is often used to gauge tradeoffs of emerging materials whose properties haven’t yet been determined. Unfortunately, the reported dependencies of Ecrit on Eg cover a surprisingly wide range in the literature. Moreover, Ecrit is a function of material doping. Further, discrepancies arise in Ecrit values owing to differences between punch-through and non-punch-through device structures. We report a new normalization procedure that enables comparison of critical electric field values across materials, doping, and different device types. An extensive examination of numerous references reveals that the dependence Ecrit ∝ Eg1.83 best fits the most reliable and newest data for both direct and indirect semiconductors. Graphical abstract: [Figure not available: see fulltext.].

Cite

CITATION STYLE

APA

Slobodyan, O., Flicker, J., Dickerson, J., Shoemaker, J., Binder, A., Smith, T., … Hollis, M. (2022, February 28). Analysis of the dependence of critical electric field on semiconductor bandgap. Journal of Materials Research. Springer Nature. https://doi.org/10.1557/s43578-021-00465-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free