A Survey on Event-Based News Narrative Extraction

13Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

Narratives are fundamental to our understanding of the world, providing us with a natural structure for knowledge representation over time. Computational narrative extraction is a subfield of artificial intelligence that makes heavy use of information retrieval and natural language processing techniques. Despite the importance of computational narrative extraction, relatively little scholarly work exists on synthesizing previous research and strategizing future research in the area. In particular, this article focuses on extracting news narratives from an event-centric perspective. Extracting narratives from news data has multiple applications in understanding the evolving information landscape. This survey presents an extensive study of research in the area of event-based news narrative extraction. In particular, we screened more than 900 articles, which yielded 54 relevant articles. These articles are synthesized and organized by representation model, extraction criteria, and evaluation approaches. Based on the reviewed studies, we identify recent trends, open challenges, and potential research lines.

Cite

CITATION STYLE

APA

Keith Norambuena, B. F., Mitra, T., & North, C. (2023). A Survey on Event-Based News Narrative Extraction. ACM Computing Surveys, 55(14 s). https://doi.org/10.1145/3584741

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free