The neural coding of human color vision begins in the retina. The outputs of long (L)-, middle (M)-, and short (S)-wavelength-sensitive cone photoreceptors combine antagonistically to produce "red-green" and "blue-yellow" spectrally opponent signals (Hering, 1878; Hurvich and Jameson, 1957). Spectral opponency is well established in primate retinal ganglion cells (Reid and Shapley, 1992; Dacey and Lee, 1994; Dacey et al., 1996), but the retinal circuitry creating the opponency remains uncertain. Here we find, from whole-cell recordings of photoreceptors in macaque monkey, that "blue-yellow" opponency is already present in the center-surround receptive fields of S cones. The inward current evoked by blue light derives from phototransduction within the outer segment of the S cone. The outward current evoked by yellow light is caused by feedback from horizontal cells that are driven by surrounding L andMcones. Stimulation of the surround modulates calcium conductance in the center S cone. Copyright © 2010 the authors.
CITATION STYLE
Packer, O. S., Verweij, J., Li, P. H., Schnapf, J. L., & Dacey, D. M. (2010). Blue-yellow opponency in primate S cone photoreceptors. Journal of Neuroscience, 30(2), 568–572. https://doi.org/10.1523/JNEUROSCI.4738-09.2010
Mendeley helps you to discover research relevant for your work.