Transcription factor rbpj as a molecular switch in regulating the notch response

26Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The Notch signal transduction cascade requires cell-to-cell contact and results in the proteolytic processing of the Notch receptor and subsequent assembly of a transcriptional coactivator complex containing the Notch intracellular domain (NICD) and transcription factor RBPJ. In the absence of a Notch signal, RBPJ remains at Notch target genes and dampens transcriptional output. Like in other signaling pathways, RBPJ is able to switch from activation to repression by associating with corepressor complexes containing several chromatin-modifying enzymes. Here, we focus on the recent advances concerning RBPJ-corepressor functions, especially in regard to chromatin regulation. We put this into the context of one of the best-studied model systems for Notch, blood cell development. Alterations in the RBPJ-corepressor functions can contribute to the development of leukemia, especially in the case of acute myeloid leukemia (AML). The versatile role of transcription factor RBPJ in regulating pivotal target genes like c-MYC and HES1 may contribute to the better understanding of the development of leukemia.

Cite

CITATION STYLE

APA

Giaimo, B. D., Gagliani, E. K., Kovall, R. A., & Borggrefe, T. (2021). Transcription factor rbpj as a molecular switch in regulating the notch response. In Advances in Experimental Medicine and Biology (Vol. 1287, pp. 9–30). Springer. https://doi.org/10.1007/978-3-030-55031-8_2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free