In inverted atomic ensembles, photon-mediated interactions give rise to Dicke superradiance, a form of many-body decay that results in a rapid release of energy as a photon burst. While originally studied in pointlike ensembles, this phenomenon persists in extended ordered systems if the interparticle distance is below a certain bound. Here, we investigate Dicke superradiance in a realistic experimental setting using ordered arrays of alkaline-earth(-like) atoms, such as strontium and ytterbium. Such atoms offer exciting new opportunities for light-matter interactions, as their internal structure allows for trapping at short interatomic distances compared to their long-wavelength transitions, providing the potential for collectively enhanced dissipative interactions. Despite their intricate electronic structure, we show that two-dimensional arrays of these atomic species should exhibit many-body superradiance for achievable lattice constants. Moreover, superradiance effectively "closes"transitions, such that multilevel atoms become more two-level like. This occurs because the avalanchelike decay funnels the emission of most photons into the dominant transition, overcoming the single-atom decay ratios dictated by their fine structure and Zeeman branching. Our work represents an important step in harnessing alkaline-earth atoms as quantum optical sources and as platforms to explore many-body dissipative dynamics.
CITATION STYLE
Masson, S. J., Covey, J. P., Will, S., & Asenjo-Garcia, A. (2024). Dicke Superradiance in Ordered Arrays of Multilevel Atoms. PRX Quantum, 5(1). https://doi.org/10.1103/PRXQuantum.5.010344
Mendeley helps you to discover research relevant for your work.