ACE (I/D), ACTN3 (R/X), PPARGC1A (Gly482Ser) and PPARA (G/C) polymorphisms have been linked to the success in power-oriented sports through the intermediate phenotypes. The study involved 193 Lithuanian elite athletes and 250 controls. The measured phenotypic variables included short-term explosive muscle power (STEMP) and anaerobic alactic maximum power (AAMP). ACE DD genotype was more common among endurance athletes compared to the power athletes. The ACTN3 genotype frequencies of the elite athletes differed from those of non-elite athletes; however, there were no differences among the athletes and the control group across the PPARGC1A Gly482Ser genotypes. The frequency of PPARA CC genotype increased with the growing skill level of athletes (non-elite 2%, sub-elite 7.7%, elite 11.6%). The STEMP and AAMP were higher in the males than females and they were also higher in the power-oriented group compared to the endurance sports group. Success in power sports can be attributed to the ACE II, PPARGC1A SerSer, PPARA CC genotype in association with phenotypic characteristics such as AAMP and STEMP. ACTN3 XX genotype may not be critical but rather additive to endurance performance. The results show that high muscle power depends on both environmental and genetic factors. © 2010 Versita Warsaw and Springer-Verlag Wien.
CITATION STYLE
Ginevičiene, V., Pranckevičiene, E., Milašius, K., & Kučinskas, V. (2011). Gene variants related to the power performance of the Lithuanian athletes. Central European Journal of Biology, 6(1), 48–57. https://doi.org/10.2478/s11535-010-0102-5
Mendeley helps you to discover research relevant for your work.