In this work, we estimate the probability of an infected person infecting another person in the vicinity by coughing in the context of COVID-19. The analysis relies on the experimental data of Simha and Rao ["Universal trends in human cough airflows at large distances,"Phys. Fluids 32, 081905 (2020)] and similarity analysis of Agrawal and Bhardwaj ["Reducing chances of COVID-19 infection by a cough cloud in a closed space,"Phys. Fluids 32, 101704 (2020)] to determine the variation of the concentration of infected aerosols with some distance from the source. Theanalysis reveals a large probability of infection within the volume of the cough cloud and a rapid exponential decay beyond it. The benefit of using a mask is clearly brought out through a reductionin the probability of infection. The increase in the probability of transmission by a super-spreader is also quantified for the first time. At a distance of 1 m, the probability of infection from a super-spreader is found to be 185% larger than a normal person. Our results support the current recommendation of maintaining a 2 m distance between two people. The analysis is enough to be applied to the transmission of other diseases by coughing, while the probability of transmission of COVID-19 due to other respiratory events can be obtained using our proposed approach.
CITATION STYLE
Agrawal, A., & Bhardwaj, R. (2021). Probability of COVID-19 infection by cough of a normal person and a super-spreader. Physics of Fluids, 33(3). https://doi.org/10.1063/5.0041596
Mendeley helps you to discover research relevant for your work.